ПРОДУКТИВНОСТЬ И АДАПТИВНАЯ СПОСОБНОСТЬ ГЕНОТИПОВ ГРЕЧИХИ ОБЫКНОВЕННОЙ В УСЛОВИЯХ ПРЕДКАМЬЯ РЕСПУБЛИКИ ТАТАРСТАН

Л.Р. Климова ¹, Ф.З. Кадырова²

¹ТатНИИСХ ФИЦ КазНЦ РАН, г. Казань, Российская Федерация;

²Казанский государственный аграрный университет, г. Казань, Российская Федерация, e-mail: Li21@mail.ru

Аннотация. В статье представлены результаты исследования генотипов гречихи обыкновенной на продуктивность и адаптивную способность. Исследования проводились в 2019-2021 гг. на опытном поле Казанского ГАУ и в 2022 году на экспериментальной базе Татарского НИИСХ. Полученные результаты показывают, что наличие в популяции фасциированных форм повышает адаптивные признаки, а сортообразец К-990 сочетает в себе комплекс биологически-ценных качеств на адаптивность и стабильность урожаев.

Ключевые слова: гречиха, продуктивность, общая адаптивная способность, селекционная ценность генотипа, относительная стабильность генотипа, генотип

Введение. В последние десятилетия урожайность многих сельскохозяйственных культур заметно возросла, благодаря интенсивной селекционной работе. Однако в результате хозяйственной деятельности появились факторы, снижающие продуктивные качества сортов, в связи с отсутствием адаптивных механизмов регуляции процессов жизнедеятельности растений [1,2].

Гречиха обыкновенная является сельскохозяйственной культурой, урожайность которой сильно зависит от гидротермических условий в период вегетации [3,4].

К современным сортам сельскохозяйственных культур предъявляются все больше требований, которые нельзя реализовать без знаний об адаптивности и стабильности генотипа [5]. Поэтому, учитывая наблюдающуюся в районах Среднего Поволжья тенденцию изменения климатических условий, изучение и создание селекционно-ценных форм с высоким потенциалом адаптивности к условиям произрастания и стабильностью урожаев в различных агроклиматических условиях приобретает все большую актуальность.

Цель работы – оценить продуктивность и показатели адаптивной способности и стабильности генотипов гречихи обыкновенной в условиях Предкамья Республики Татарстан.

Материалы и методы работы. Исследования проводился в 2019-2021 гг. на опытных полях Казанского ГАУ, в 2022 году — на опытных полях Татарского НИИСХ. Объектами изучения были три сорта селекции Татарского НИИ СХ, допущенных к возделыванию и перспективный сортообразец гречихи обыкновенной, в. т.ч.:

—Чатыр Тау — среднеранний сорт, выведенный многократным повторным индивидуально-семейным отбором фасциированных форм из сложно-гибридной популяции в направлении повышения скороспелости и засухоустойчивости;

-Батыр – выведен индивидуально-семейным отбором из гибридной популяции Молва х Казанская 309 в направлении повышения нектарной продуктивности растений и качества зерна;

-Яшьлек – среднеранний сорт, выведенный многократным семейственно-групповым отбором из материалов питомника фасциированных форм;

-K-990 – сложногибридная популяция, среднерослый морфобиотип с фасциированным изогнутым стеблем и крупными, плотными верхушечными соцветиями.

Почва опытного участка серая лесная среднесуглинистая. Обменный калий и подвижный фосфор определяли по Кирсанову, содержание которых варьировало в диапазоне 92 - 121 и 219 - 260 мг/кг почвы соответственно. Содержание гумуса изменялось от 3,6 до 4,0%. рН солевой вытяжки колебалась в пределах 6,3-6,6.

Площадь делянок 25 м^2 , повторность четырехкратная, размещение вариантов опыта – систематическое.

Посев гречихи обыкновенной осуществляли сеялкой Wintersteiger рядовым способом с нормой высева 2,0 млн. штук всхожих семян на гектар, при оптимальном для гречихи прогревании почвы на глубине залегания семян и при стабильных суточных температурах воздуха. Технология обработки почвы и ухода за посевами – общепринятая для Республики Татарстан, учет урожая был произведен взвешиванием, после обмолота делянок. Статистическая обработка данных была выполнена в программе Excel 2016. Оценку адаптивной способности и стабильности генотипов проводили по А.В. Кильчевскому и Л.В. Хотылевой

Вегетационные периоды годов исследований характеризовались нестабильностью проявления гидротермических условий. Вегетация гречихи в 2021 году протекала в условиях острой почвенной и атмосферной засухи. Гидротермический коэффициент по Селянинову в период вегетации гречихи в среднем за вегетацию составил 0,29, свидетельствуя об острой воздушной и почвенной засухе. Особенно критические значения ГТК были в период формирования продуктивного стеблестоя (0,32), вегетативных органов (0,14), и период налива плодов (0,26).

В 2019 году гидротермический коэффициент в среднем за период вегетации был равен 1,46. Май и июнь этого года характеризовались дефицитом осадков. Июль и август по температурному режиму соответствовали среднемноголетним данным, а по количеству выпавших осадков превзошли среднемноголетние значения.

Вегетационный период 2020 года был достаточно влажным. На протяжении всего периода роста и развития растений гречихи количество выпавших осадков превышало среднемноголетнюю норму, при этом температурный режим был на уровне среднемноголетних данных.

Вегетационный период 2022 года был не типичным для Республики Татарстан. В мае отмечались низкие среднесуточные температуры, что сдвинуло посев зерновых в среднем на две недели. Остальной период вегетации гречихи обыкновенной характеризовался неустойчивым увлажнением И преобладанием среднесуточных температур Губительное среднемноголетними данными. воздействие высоких среднесуточных температур смягчили обильные осадки в фазу «цветение – начало плодообразования».

Таким образом гидротермические условия были контрастными как по годам, так и по критическим периодам формирования урожаев в разрезе лет, что позволяет дать объективную оценку параметрам адаптивного потенциала изучаемых сортов и стабильности их урожаев.

Результаты и обсуждение. Реакция генотипов гречихи на метеорологические условия по годам была различной (таблица 1).

Наименее засухоустойчивым оказался сорт Батыр, который сформировал 0,14 т/га в 2021 году (таблица 1). Урожайность сортов, сформированных на основе вовлечения в состав популяций фасциированных форм была несколько выше.

В годы с оптимальной влажностью выделялись сорт Чатыр Тау и сортообразец К-990. В среднем за четыре года исследований максимальная урожайность зерна была получена на сорте Чатыр тау (2,11 т/га) и сортообразце К-990 (2,04 т/га).

Таблица 1. Урожайность генотипов гречихи обыкновенной по годам, т/га

Вариант		Средняя за годы, т/га							
	2019	2020	2021	2022					
Чатыр Тау	3,85	0,85	0,27	3,49	2,11				
Яшьлек	1,80	1,17	0,27	3,27	1,63				
Батыр	2,93	1,25	0,14	3,48	1,95				
К-990	3,13	1,20	0,32	3,50	2,04				
HCP _A	0,34								
HCP _B	0,34								
HCP AB	0,69								

Выявленные различия между эффектами генотипов по годам и их взаимодействия были подсчитаны параметры адаптивности и стабильности генотипов гречихи обыкновенной (таблица 2).

Таблица 2. Параметры адаптивной способности и стабильности генотипов гречихи (2019 – 2022 г.г.)

Вариант	Средняя урожайность по годам	Общая адаптивная способность	Специфическая адаптивная способность	Коэффициент нелинейности	Относительная стабильность генотипа, %	Селекционная ценность генотипа	Коэффициент компенсации
Чатыр Тау	2,11	0,18	1,63	0,086	77,06	0,97	1,47
Яшьлек	1,63	-0,31	1,14	0,200	70,10	0,82	0,72
Батыр	1,95	0,02	1,38	0,010	70,91	0,97	1,06
К-990	2,04	0,11	1,37	0,006	66,97	1,08	1,04

Под адаптивной способностью понимают способность генотипа поддерживать свойственное ему фенотипическое выражение признака в определенных условиях среды. Общая адаптивная способность генотипа характеризует среднее значение признака в различных условиях среды, анализ данных урожаев показал, что наибольшей общей адаптивностью обладают сорт Чатыр Тау (0,18) и сортообразец К-990 (0,11). Сорт Яшьлек оказался нестабильным по признаку урожайности по годам урожайность, общая адаптивная способность его составила минус 0,31. Выявлена высокая тесная связь между показателями продуктивности и стабильности (r=0,91). Специфичная адаптивная способность показывает отклонение общей адаптивной способности по годам, наиболее высокой специфичной адаптивность обладал сорт Чатыр Тау (1,63), однако его генотип был наиболее нестабильным в годы исследования (77,06%).

Коэффициент нелинейности показывает ответ генотипа на среду. Во всех исследуемых генотипов коэффициент нелинейности стремится к нулю, что указывает на линейный ответ генотипа на меняющиеся условия проведенных лет исследования.

Коэффициент компенсации выявляет стабильность генотипов. Практически на всех вариантах исследования коэффициент компенсации выше единицы, что свидетельствует о преобладании эффекта дестабилизации. Коэффициент компенсации меньше единицы был на варианте Яшьлек (0,72), что свидетельствует о наличии компенсирующей способности генотипа при взаимодействии генотип*год.

Наиболее ценным генотипом в исследованиях оказался сортообразец К-990. Обладая высокой общей адаптивной способностью, он оказался наиболее стабильным в годы исследования (66,97%), а селекционная ценность генотипа оказалась наиболее высокой (1,08).

Выводы. Наиболее адаптивными генотипами по годам оказались варианты Чатыр Тау и К-990. Наиболее ценным генотипом для вовлечения в селекционный процесс и создания сортов адаптированных к условиям Республики Татарстан, со стабильной по годам урожайностью, был сортообразец К-990.

Библиографический список

- 1. Физиолого-генетические аспекты селекции гречихи на адаптивность / А. В. Амелин, А. Н. Фесенко, Ф. 3. Кадырова [и др.]. Орел: Издательство Картуш, 2021. 408 с. ISBN 978-5-9708-0890-0.
- 2. Жученко А.А. Ресурсный потенциал производства зерна в России (теория и практика). М: Агрорус, 2004. 1109 с.
- 3. Кадырова Ф. 3., Климова Л.Р., Кадырова Л.Р. О некоторых приемах оптимизации возделывания гречихи в засушливых условиях // Достижения науки и техники АПК. 2019. Т. 33. № 5. С. 30-33. DOI 10.24411/0235-2451-2019-10507.
- 4. Никитина В.И., Вагнер В.В. Влияние метеорологических факторов на урожайность и продолжительность вегетационного периода сортов гречихи посевной в лесостепной зоне Южно-Минусинского округа// Вестник КрасГАУ. 2022. №5. С. 3-8. DOI: 10.36718/1819-4036-2022-5-3-8.
- 5.Фесенко А.Н., Фесенко И.Н. Результаты селекции, динамика производства и ранок зерна гречихи (анализ многолетних данных)// Земледелие. 2017. №3. С. 24 26.